Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium.
نویسندگان
چکیده
BACKGROUND In the failing human heart, altered Ca2+ homeostasis causes contractile dysfunction. Because Ca2+ and Na+ homeostasis are intimately linked through the Na+/Ca2+ exchanger, we compared the regulation of [Na+]i in nonfailing (NF) and failing human myocardium. METHODS AND RESULTS [Na+]i was measured in SBFI-loaded muscle strips. At slow pacing rates (0.25 Hz, 37 degrees C), isometric force was similar in NF (n=6) and failing (n=12) myocardium (6.4+/-1.2 versus 7.2+/-1.9 mN/mm2), but [Na+]i and diastolic force were greater in failing (22.1+/-2.6 mmol/L and 15.6+/-3.2 mN/mm2) than in NF (15.9+/-3.1 mmol/L and 3.50+/-0.55 mN/mm2; P<0.05) myocardium. In NF hearts, increasing stimulation rates resulted in a parallel increase in force and [Na+]i without changes in diastolic tension. At 2.0 Hz, force increased to 136+/-17% of the basal value (P<0.05), and [Na+]i to 20.5+/-4.2 mmol/L (P<0.05). In contrast, in failing myocardium, force declined to 45+/-3%, whereas [Na+]i increased to 27.4+/-3.2 mmol/L (both P<0.05), in association with significant elevations in diastolic tension. [Na+]i was higher in failing than in NF myocardium at every stimulation rate. [Na+]i predicted in myocytes from Na+ (pipette)-contraction relations was 8.0 mmol/L in NF (n=9) and 12.1 mmol/L in failing (n=57; P<0.05) myocardium at 0.25 Hz. Reverse-mode Na+/Ca2+ exchange induced significant Ca2+ influx in failing but not NF myocytes, compatible with higher [Na+]i in failing myocytes. CONCLUSIONS Na+i homeostasis is altered in failing human myocardium. At slow heart rates, the higher [Na+]i in failing myocardium appears to enhance Ca2+ influx through Na+/Ca2+ exchange and maintain sarcoplasmic reticulum Ca(2+) load and force development. At faster rates, failing myocytes with high [Na+]i cannot further increase sarcoplasmic reticulum Ca2+ load and are prone to diastolic Ca2+ overload.
منابع مشابه
Reduced Stretch-Induced Force Response in Failing Human Myocardium Caused by Impaired Na -Contraction Coupling
Background—Stretch elicits an immediate, followed by a delayed, inotropic response in various animal models and failing human myocardium. This study aimed to characterize functional differences in the stretch response between failing and nonfailing human myocardium. Methods and Results—Experiments were performed in muscle tissue from 86 failing and 16 nonfailing human hearts. Muscles were stret...
متن کاملReduced stretch-induced force response in failing human myocardium caused by impaired Na(+)-contraction coupling.
BACKGROUND Stretch elicits an immediate, followed by a delayed, inotropic response in various animal models and failing human myocardium. This study aimed to characterize functional differences in the stretch response between failing and nonfailing human myocardium. METHODS AND RESULTS Experiments were performed in muscle tissue from 86 failing and 16 nonfailing human hearts. Muscles were str...
متن کاملEffect of inotropic stimulation on the negative force-frequency relationship in the failing human heart.
BACKGROUND In severe human heart failure, an increase in frequency of stimulation is accompanied by a reduced force of contraction in vivo and in vitro. The present study was aimed to investigate whether inotropic stimulation influences the inverse force-frequency relationship in failing human myocardium. METHODS AND RESULTS The effects of the cAMP-independent positive inotropic agents ouabai...
متن کاملForce-Frequency Relationship in the Failing Human Heart
a reduced force of contraction in vivo and in vitro. The present study was aimed to investigate whether inotropic stimulation influences the inverse force-frequency relationship in failing human myocardium. Methods and Results. The effects of the cAMP-independent positive inotropic agents ouabain (0.01 ,imol/L) and BDF 9148 (0.1 ,umol/L) as well as the 3-adrenoceptor agonist isoprenaline (0.01 ...
متن کاملDirect inotropic effects of exogenous and endogenous urotensin-II: divergent actions in failing and nonfailing human myocardium.
BACKGROUND Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. METHODS AND RESULTS We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myoca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 106 4 شماره
صفحات -
تاریخ انتشار 2002